Total number of printed pages-7

3 (Sem-6/CBCS) MAT HC 2

2022 MATHEMATICS

(Honours)

Paper: MAT-HC-6026

(Partial Differential Equations)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer any seven:

 $1 \times 7 = 7$

- (i) The equation of the form $P_p + Q_q = \mathbb{R}$ is known as
 - (a) Charpit's equation
 - (b) Lagrange's equation
 - (c) Bernoulli's equation
- (d) Clairaut's equation
 (Choose the correct answer)

differential equation.

- (ii) How many minimum no. of independent variables does a partial differential equation require?
- (iii) Find the degree and order of the equation

$$\frac{\partial^3 z}{\partial x^3} + \left(\frac{\partial^3 z}{\partial x \partial y^2}\right)^2 + \frac{\partial z}{\partial y} = \sin(x + 2y)$$

- (iv) Which method can be used for finding the complete solution of a non-linear partial differential equation of first order
 - (a) Jacobi method
 - (b) Charpit's method
 - (c) Both (a) and (b)
 - (d) None of the above

(Choose the correct answer)

(v) State True Or False:

The equation

$$u_{xx} + u_{yy} + u_{zz} = 0$$

is an Hyperbolic equation.

(vi) Fill in the blanks:

$$\left(\frac{\partial z}{\partial x}\right)^2 + 2\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + z = 0$$

is a _____ order partial differential equation.

(vii) The characteristic equation of $yu_x + xu_y = u$ is

(a)
$$\frac{dx}{x} = \frac{dy}{y} = \frac{du}{u}$$

(b)
$$\frac{dx}{y} = \frac{dy}{x} = \frac{du}{u}$$

(c)
$$\frac{dx}{u} = \frac{dy}{x} = \frac{du}{y}$$

- (d) None of the above (Choose the correct answer)
- (viii) State True **Or** False $xu_x + yu_y = u^2 + x^2 \text{ is a semi-linear}$ partial differential equation.
- (ix) Fill in the blanks:

 A solution z = z(x, y) when interpreted as a surface in 3-dimensional space is called ______.
 - (x) The partial differential equation is elliptical if

$$(a) \quad B^2 - 4AC > 0$$

$$(b) \quad B^2 - 4AC \ge 0$$

$$(c) \quad B^2 - 4AC \le 0$$

(d)
$$B^2 - 4AC < 0$$

(Choose the correct answer)

Solve any three : see an ada dags. 5×3=15

- (i) Define quasi-linear partial differential equation and give one example.
- (ii) Show that a family of spheres $(x-a)^2 + (y-b)^2 = r^2$ satisfies the partial differential equation $z^2 (p^2 + q^2 + 1) = r^2$
- (iii) Eliminate the constants a and b from z = (x+a)(y+b).
- (iv) Determine whether the given equation is hyperbolic, parabolic or elliptic $u_{xx} 2u_{yy} = 0$.
- (v) Solve the differential equation p+q=1.
- (vi) Explain the essential features of the "Method of separation of variables".
 - (vii) Mention when Charpit's method is used. Name a disadvantage of Charpit's method.
 - (viii) What is the classification of the equation

3 (Sem-6/CBCS) MAT HC2/G

$$u_{xx} - 4u_{xy} + 4u_{yy} = e^y$$

- (i) Form a partial differential equation by eliminating arbitrary functions f and F from $y = j^{f}(x-at) + F(x+at)$.
- (ii) Solve $y^2 p x cyq = x(z-2y)$
- Find the integral surface of the linear partial differential equation $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$ which contains the straight line x+y=0, z=1.
 - (iv) Find the solution of the equation z = pqwhich passes through the parabola x = 0, $y^2 = z$.
 - (v) Find a complete integral of the equation $x^2p^2 + y^2q^2 = 1.$ xm yl = o(xl xn) + o(yn xm)
- (vi) Reduce the equation $yu_x + u_y = x$ to canonical form and obtain the general solution.

the equation $u_x + u = u_y$, (vii) Apply the method of separation of $u(x, 0) = 4e^{-3x} \cdot x$ variables u(x, y) = f(x)g(y) to solve

4. Answer any three: $4u_{xx} + 5u_{xy} + u_{yy} + u_x + u_y = 2.$

(i) Solve
$$(p^2 + q^2)y - qz = 0$$
 by Jacobi method.

(ii) Solve
$$z^2 = pqxy$$
 by Charpit's method.

$$\frac{x^2}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$$

$$(mz-ny)p+(nx-lz)q=ly-mx$$

(v) Use
$$v = \ln u$$
 and $v = f(x) + g(y)$ to solve the equation

$$x^2 u_x^2 + y^2 u_y^2 = u^2.$$

$$x^2u_x^2 + y^2u_y^2 = u^2$$
. Godulos

- (vi) Find the solution of the equation which passes through the x axis. $z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y)$
- (vii) Find the canonical form of the equation $y^2 u_{xx} - x^2 u_{yy} = 0$.
- (viii) Classify the second order linear partial differential equation with example.

3 (Sem-6/CBCS) MAT HC2/G 6

3 (Sem-e/cBCS) MYL HCS/e

7